Abstract
Transplant vasculopathy is a major cause of chronic rejection of transplanted organs. In the present study, we examined the effects of CX-5461, a novel selective inhibitor of RNA polymerase I, on development of transplant vasculopathy using a modified model of rat aortic transplantation. The thoracic aortas from Fischer rats were transplanted into the abdominal cavity of Lewis rats. CX-5461 was mixed in pluronic gel and administered via perivascular release. Treatment with CX-5461 mitigated the development of neointimal hyperplasia and vascular inflammation. This effect was likely to be attributable in part to inhibition of macrophage-dependent innate immunity reactions. Specifically, CX-5461 exhibited potent inhibitory effects on macrophage migration and lipopolysaccharide-induced activation. Treatment with CX-5461 also prevented macrophage differentiation and maturation from primary bone marrow cells. In macrophages, CX-5461 did not alter the total amount of p53 protein, but significantly increased p53 phosphorylation, which was involved in regulating cytokine-stimulated macrophage proliferation. In conclusion, our results suggest that pharmacological inhibition of RNA polymerase I may be a novel strategy to treat transplantation-induced arterial remodeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.