Abstract

Nanoparticles with an iron core and gold shell (denoted “Fe@AuÓ”) have been reported to limit cancer-cell proliferation and therefore have been proposed as a potential anti-cancer agent. However, the underlying mechanisms are still unknown. In this study, we used flow cytometry, confocal fluorescence microscopy, and transmission electron microscopy to analyse the morphological and functional alterations of mitochondria in cancerous cells and healthy cells when treated with Fe@Au. It was found that Fe@Au caused an irreversible membrane-potential loss in the mitochondria of cancer cells, but only a transitory decrease in membrane potential in healthy control cells. Production of reactive oxygen species (ROS) was observed; however, additions of common ROS scavengers were unable to protect cancerous cells from the Fe@Au-induced cytotoxicity. Furthermore, iron elements, before oxidation, triggered mitochondria-mediated autophagy was shown to be the key factor responsible for the differential cytotoxicity observed between cancerous and healthy cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.