Abstract
AbstractOlive oil production generates large amounts of olive mill wastewater (OMW). OMW has a high nutrient content and could serve as fertilizer, but its fatty and phenolic constituents induce soil water repellency, phytotoxicity, and acidification. An appropriate season of OMW application may mitigate negative consequences while preserving beneficial effects. In order to investigate this, a field study was conducted, in which OMW was applied to an olive orchard in Israel either in winter or summer. Soil–water interactions (water drop penetration time, hydraulic conductivity), soil physicochemical parameters, phenolic compounds, and soil biological activity (bait‐lamina test) were determined 12 to 18 months after OMW application. The results showed elevated K+ contents in all treatments, but all other soil properties of winter treatments were comparable to the control, which suggested a certain recovery potential of the soil when OMW is applied in winter. By contrast, summer treatments revealed a ten‐fold higher soil water repellency, a three‐times lower biological activity, and a four‐fold higher content of phenolic compounds, independently of whether the soil was kept moist by irrigation or not. Thus, the OMW constituents were neither degraded nor leached by winter rain when applied during the hot season. Further research is needed to distinguish leaching and biodegradation effects, and to understand the development of the composition and degradation kinetics of organic OMW constituents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.