Abstract

AbstractThe Arctic sea ice cover undergoes large changes over an annual cycle. In winter and spring, the ice cover consists of large, snow‐covered plate‐like ice floes, with very little open water. By the end of summer, the snow cover is gone and the large floes have broken into a complex mosaic of smaller, rounded floes surrounded by a lace of open water. This evolution strongly affects the distribution and fate of the solar radiation deposited in the ice‐ocean system and consequently the heat budget of the ice cover. In particular, increased floe perimeter can result in enhanced lateral melting. We attempt to quantify the floe evolution process through the concept of a floe size distribution that is modified by lateral melting and floe breaking. A time series of aerial photographic surveys made during the SHEBA field experiment is analyzed to determine evolution of the floe size distribution from spring through summer. Based on earlier studies, we assume the floe size cumulative distribution could be represented by a power law D−α, where D is the floe diameter. The exponent α as well as the number density of floes Ntot are estimated from measurements of total ice area and perimeter. As summer progressed, there was an increase in α as the size distribution shifted toward smaller floes and the number of floes increased. Lateral melting causes the distribution to deviate from a power law for small floe sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.