Abstract

Ca2+ signaling is altered substantially in many cancers. The ryanodine receptors (RYRs) are among the key ion channels in Ca2+ signaling. This study aimed to establish the mutational profile of RYR in cancers and investigate the correlation between RYR alterations and cancer phenotypes. The somatic mutation and clinical data of 11,000 cancer patients across 33 cancer types was downloaded from The Cancer Genome Atlas (TCGA) database. Subsequent data processing was performed with corresponding packages of the R software. Mutational profile was analyzed and its correlation with tumor mutational burden (TMB), patient prognosis, age and smoking status was analyzed and compared. All three RYR isoforms exhibited random mutational distribution without hotspot mutations when all cancers were analyzed together. The number of mutations in RYR2 (2388 mutations) far overweight that of RYR1 (1439 mutations) and RYR3 (1573 mutations). Linear correlation was observed between cumulative TMB and cumulative number of mutations for all RYR isoforms. Patients with RYR mutations exhibited significantly higher TMB than those without RYR mutations for most cancer types. Strong correlation was also revealed in the average number of mutations per person between pairs of RYR isoforms. No stratification of patient overall survival (OS) by mutational status was found for all three RYR isoforms when all cancers were analyzed together, however, significant stratification of OS by RYR mutations was revealed in several individual cancers, most strikingly in LUAD (P = 0.0067, RYR1), BLCA (P = 0.00071, RYR2), LUSC (P = 0.036, RYR2) and KIRC (P = 0.0042, RYR3). Furthermore, RYR mutations were correlated with higher age, higher smoking history grading and higher number of pack years. Characteristic mutation profile of RYRs in cancers has been revealed for the first time. RYR mutations were correlated with TMB, age, smoking status and capable of stratifying the prognosis of patients in several cancer types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.