Abstract

In order to investigate the running-in process of a dry friction pair made of Cu-based powder metallurgy material and 65Mn steel, well designed pin-on-disc tests are carried out. According to the running-in mechanism of Cu-based powder metallurgy material in the tests, the running-in process is divided into two periods, namely, the interface matching period and the plastic deformation period. Then, two division indexes (the average height Sa and the root mean square height Sq) are introduced as basis for dividing this two periods, which originate from the extraction and analysis of surface morphology of asperities on the contacting surface. In the same way, two running-in recognition indexes, including equivalent changing rate H and coefficient of variation D, are further put forward as measures to characterize the running-in progress, and their effectiveness is verified by tests. Based on the recognition indexes H and D, the influence of temperature, rotation speed and load on the running-in duration of the dry friction pair is studied, and the efficient condition of running-in process is obtained. The results show that, when H ≤ 1.9 × 10−3 and D ≤ 4.2 × 10−2, we can recognise that the running-in process is completed. The running-in duration is almost the shortest under the condition of (40 N, 1400 r/min, 160 °C), which is called the efficient running-in condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.