Abstract

3C 351 is one of the most X-ray-quiet radio quasars (alpha(ox) about 1.6). We have observed 3C 351 with the ROSAT position sensitive proportional counter (PSPC) and find a complex X-ray spectrum which is not well reproduced by a power law plus low-energy cut-off model. Soft excess, partial covering, and 'warm absorber' models can all produce acceptable fits, although only the warm absorber model gives typical values for the high-energy continuum slope. The alpha(ox) measured by using quasi-simultaneous ROSAT, MMT, and HST observations is in the range 1.5-1.6, significantly above the average of 1.37 for a complete sample of 33 3CR quasars. If the soft excess or partial covering models are correct, 3C 351 appears X-ray-quiet in the PSPC band because it has an extremely steep or flat intrinsic high-energy spectral slope. However, if the warm absorber model is correct, the quasar is intrinsically X-ray-quiet; the normalization of the intrinsic (unabsorbed) X-ray emission is unusually low relative to the optical luminosity. We investigate the properties of our warm absorber model in some detail. The apparently complicated behavior of the fit parameters may be understood by considering the effects of changing absorbing column and ionization parameter on intrinsic power-law-spectra of different slopes.

Highlights

  • This article was downloaded from Harvard University's DASH repository

  • “The ROSAT Spectrum of 3C 351 - A Warm Absorber in an X-Ray-’Quiet’ Quasar?” The Astrophysical Journal 415 (September): 129

Read more

Summary

Introduction

The Harvard community has made this article openly available.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.