Abstract

A recent microphysical model for the steady-state frictional behaviour of wet illite/quartz gouges in subduction megathrust settings predicts that velocity-weakening in the seismogenic zone results from a competition between shear-induced dilatation and compaction involving water-assisted, thermally activated deformation (pressure solution) of quartz clasts. While this model is supported by experimental data, proof that quartz and water are a requirement for velocity-weakening is lacking. Here, we report on shearing experiments on water-saturated (near-)pure illite and dry 65/35 illite/quartz gouges, deformed at P-T conditions near those in situ at seismogenic depths along subduction megathrusts. We used low sliding velocities relevant to earthquake nucleation and slow slip events (1 to 100 μm/s). Previous experiments on wet illite/quartz gouges under the same conditions documented three regimes of slip stability, with velocity-strengthening at 150°C to 250°C and 400°C to 500°C, and velocity-weakening at 250°C to 400°C. In the present study, wet illite gouge exhibited similar three-regime behaviour, but with velocity-neutral rather than velocity-weakening behaviour at the intermediate temperatures. Dry illite/quartz gouge exhibited near velocity-neutral behaviour at all temperatures investigated. These results confirm that water-assisted, thermally activated quartz deformation is a key process in the velocity-weakening behaviour at intermediate temperatures in wet illite/quartz gouges and support the existing microphysical model. The implication of this model is that seismogenesis occurs under conditions where creep by thermally activated quartz deformation is fast enough to moderate ‘brittle’ dilatation to remain at subcritical porosity values but too slow to allow ductile shear of clasts.

Highlights

  • A recent microphysical model for the steady-state frictional behaviour of wet illite/quartz gouges in subduction megathrust settings predicts that velocity-weakening in the seismogenic zone results from a competition between shear-induced dilatation and compaction involving water-assisted, thermally activated deformation of quartz clasts

  • We argue that the similarity between the velocity-weakening regime in these gouges and the seismogenic zone on megathrusts suggests that seismogenesis may be caused by this competition

  • This study has investigated the effects of quartz and pore water on the frictional behaviour of wet, simulated illite/ quartz gouges

Read more

Summary

Introduction

A recent microphysical model for the steady-state frictional behaviour of wet illite/quartz gouges in subduction megathrust settings predicts that velocity-weakening in the seismogenic zone results from a competition between shear-induced dilatation and compaction involving water-assisted, thermally activated deformation (pressure solution) of quartz clasts. While this model is supported by experimental data, proof that quartz and water are a requirement for velocity-weakening is lacking. Dry illite/quartz gouge exhibited near velocity-neutral behaviour at all temperatures investigated These results confirm that water-assisted, thermally activated quartz deformation is a key process in the velocity-weakening behaviour at intermediate temperatures in wet illite/quartz gouges and support the existing microphysical model. The implication of this model is that seismogenesis occurs under conditions where creep by thermally activated quartz deformation is fast enough to moderate ‘brittle’ dilatation to remain at subcritical porosity values but too slow to allow ductile shear of clasts

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.