Abstract

We developed a trophic dynamic model of key populations and processes in the New River, West Virginia, to identify the mechanisms most responsible for maintaining food web structure. Key populations were represented by thirteen model components and were aquatic insects; age-1 and age-2 crayfish (three species); age-1 and age-2 hellgrammites (Corydalus cornutus larvae); non-game fishes; age-0, age-1, and adult smallmouth bass (Micropterus dolomieu); age-0, age-1, and adult rock bass (Ambloplites rupestris); and age-0, age-1 to age-3, and adult flathead catfish (Pylodictis olivaris). In this system, crayfish and hellgrammites are harvested to provide bait for the recreational fishery that extensively exploits the three predatory fish species. Predation and intraspecific regulation were represented with nonlinear algorithms, and linear terms represented fishery harvests. Interspecific competition among components occurred through predation on shared prey. Error analysis of the model suggested that predation was the most important mechanism in maintaining system structure (the disposition of biomass among system components). Further, the trophic relation between each component and its prey accounted for 34–64% of the variability in food web structure, whereas predation on each component explained 1–24% of food web structure variability. Therefore, so-called ‘bottom-up’ effects were more influential than ‘top-down’ effects. Interspecific competition and intraspecific regulation had secondary roles in maintaining New River food web structure, although intraspecific regulation was most important to aquatic insects, which were not predatory in our model. Both forms of competition are probably tempered by extensive predation and exploitation in the New River system. Exploitation was a secondary structuring agent to adult smallmouth bass, which experience a high rate of harvest in the New River.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.