Abstract

Mineral physics data related to the deep dehydration of stagnant slabs are summarized. The hydrogen diffusion in minerals of the mantle transition zone is not fast enough to homogenize the transition zone on the geological time scale, and hydrogen is expected to be unevenly distributed there. The hydrous fluid formed in the transition zone tends to percolate into shallower depths to form gravitationally stable hydrous magmas at the base of the upper mantle. We need further studies on the relation of intraplate volcanism above the stagnant slab and deep dehydration, because we expect the geochemical fingerprints of deep dehydration to be quite different from those of shallow dehydration from the subducting slabs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.