Abstract

Monosodium glutamate (MSG) is a silent excitotoxin used as a flavour enhancer but exerts serious health hazards to consumers. MSG plays a role in neuronal function as the dominant excitatory neurotransmitter. It is transferred into the blood and ultimately increases brain glutamate levels, causing functional disruptions notably via oxidative stress. The study evaluated the toxic effect of high consumption of MSG and the modulatory role of vitamin C on ATPase activities in the striatum and cerebellum of male Wistar rats for five weeks. Rats were grouped into four (A-D): group A was fed with rat's show only; Group B was fed with diet containing 15% MSG; Group C was treated with vitamin C (200mg/kg b.wgt orally in 0.9% saline solution) only for 3weeks; and group D rats were fed with MSG and vitamin C. The findings show that MSG does not affect body and cerebellum weights but increases striatal weight. MSG increases the malondialdehyde (MDA) level and significantly decreases catalase (CAT) and superoxide dismutase (SOD) activities and glutathione (GSH) levels. MSG significantly impaired striatal and cerebellar ATPases activities (Na+/K+-, Ca2+-, Mg2+- and total ATPases). Vitamin C treatment abolishes MSG-induced oxidative stress and improves ATPase activities. The findings show that vitamin C has beneficial effects in improving the functions of membrane-bound ATPases against MSG toxicity in rat's striatum and cerebellum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.