Abstract

BackgroundMany studies have demonstrated the usefulness of repetitive task practice by using robotic-assisted gait training (RAGT) devices, including Lokomat, for the treatment of lower limb paresis. Virtual reality (VR) has proved to be a valuable tool to improve neurorehabilitation training. The aim of our pilot randomized clinical trial was to understand the neurophysiological basis of motor function recovery induced by the association between RAGT (by using Lokomat device) and VR (an animated avatar in a 2D VR) by studying electroencephalographic (EEG) oscillations.MethodsTwenty-four patients suffering from a first unilateral ischemic stroke in the chronic phase were randomized into two groups. One group performed 40 sessions of Lokomat with VR (RAGT + VR), whereas the other group underwent Lokomat without VR (RAGT-VR). The outcomes (clinical, kinematic, and EEG) were measured before and after the robotic intervention.ResultsAs compared to the RAGT-VR group, all the patients of the RAGT + VR group improved in the Rivermead Mobility Index and Tinetti Performance Oriented Mobility Assessment. Moreover, they showed stronger event-related spectral perturbations in the high-γ and β bands and larger fronto-central cortical activations in the affected hemisphere.ConclusionsThe robotic-based rehabilitation combined with VR in patients with chronic hemiparesis induced an improvement in gait and balance. EEG data suggest that the use of VR may entrain several brain areas (probably encompassing the mirror neuron system) involved in motor planning and learning, thus leading to an enhanced motor performance.Trial registrationRetrospectively registered in Clinical Trials on 21-11-2016, n.NCT02971371.

Highlights

  • Many studies have demonstrated the usefulness of repetitive task practice by using robotic-assisted gait training (RAGT) devices, including Lokomat, for the treatment of lower limb paresis

  • We considered the global Modified Ashworth Scale (MAS) score derived from the muscles of hip, knee, and ankle, the Hamilton Rating Scale for Depression (HRS), the hip and knee flexion/extension force measured by the RAGT device, the extent to which a patient felt him/ herself entrained in the Virtual reality (VR) training, and the mean of the episodes of drowsiness

  • Participant flow We summarized in the CONSORT flow diagram (Fig. 2): the numbers of participants who were randomly assigned, who received the intended treatment, and who were analyzed for the primary outcome; the losses and exclusions during periods of recruitment, randomization, and follow-up

Read more

Summary

Introduction

Many studies have demonstrated the usefulness of repetitive task practice by using robotic-assisted gait training (RAGT) devices, including Lokomat, for the treatment of lower limb paresis. The observation of an action, even simulated (on a screen, as in the case of VR), allows the recruitment of stored motor programs that would promote, in turn, movement execution recovery [19, 20] These processes are expressed by wide changes in α and β oscillation magnitude at the electroencephalography (EEG) (including an α activity decrease and a β activity increase) across the brain areas putatively belonging to the MNS (including the inferior frontal gyrus, the lower part of the precentral gyrus, the rostral part of the inferior parietal lobule, and the temporal, occipital and parietal visual areas) [8, 9, 21, 22]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.