Abstract
Ubiquitin is a small, highly conserved, ubiquitously expressed eukaryotic protein with immensely important and diverse regulatory functions. A well-studied function of ubiquitin is its role in selective proteolysis by the ubiquitin-proteasome system (UPS). The UPS has emerged as an integral player in plant response and adaptation to environmental stresses such as drought, salinity, cold and nutrient deprivation. The UPS has also been shown to influence the production and signal transduction of stress-related hormones such as abscisic acid. Understanding UPS function has centered mainly on defining the role of E3 ubiquitin ligases, which are the substrate-recruiting component of the ubiquitination pathway. The recent identification of stress signaling/regulatory proteins that are the subject of ubiquitin-dependent degradation has increased our knowledge of how the UPS facilitates responses to adverse environmental conditions. A brief overview is provided on role of the UPS in modulating protein stability during abiotic stress signaling. E3 ubiquitin ligases for which stress-related substrate proteins have been identified are discussed.
Highlights
The covalent attachment of ubiquitin molecules to selected proteins (referred to as ubiquitination) can influence activity, abundance, trafficking, or localization
The covalent attachment of ubiquitin molecules to selected proteins can influence activity, abundance, trafficking, or localization
This review provides a brief overview of the role of these E3 ligase-substrates pairings during plant responses to abiotic stresses
Summary
The covalent attachment of ubiquitin molecules to selected proteins (referred to as ubiquitination) can influence activity, abundance, trafficking, or localization. Ubiquitin ligase targeting a negative regulator for degradation in response to a stimulus would enable the activation of signaling pathways required for tolerance of the perceived stress (Figure 1B). An example of this is the RING-type E3 ligase high expression of osmotically responsive gene 1 (HOS1), which mediates the degradation of Inducer of CBF Expression 1 (ICE1), a MYC transcription factor that regulates the expression of cold-responsive genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.