Abstract
Predicting how the range dynamics of migratory species will respond to climate change requires a mechanistic understanding of the factors that operate across the annual cycle to control the distribution and abundance of a species. Here, we use multiple lines of evidence to reveal that environmental conditions during the nonbreeding season influence range dynamics across the life cycle of a migratory songbird, the American redstart (Setophaga ruticilla). Using long-term data from the nonbreeding grounds and breeding origins estimated from stable hydrogen isotopes in tail feathers, we found that the relationship between annual survival and migration distance is mediated by precipitation, but only during dry years. A long-term drying trend throughout the Caribbean is associated with higher mortality for individuals from the northern portion of the species' breeding range, resulting in an approximate 500 km southward shift in breeding origins of this Jamaican population over the past 30 y. This shift in connectivity is mirrored by changes in the redstart's breeding distribution and abundance. These results demonstrate that the climatic effects on demographic processes originating during the tropical nonbreeding season are actively shaping range dynamics in a migratory bird.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.