Abstract

A prescribed pressure is the most common flow boundary condition used in flow simulations. In the Direct Simulation Monte Carlo (DSMC) method, boundary pressure is controlled by the number flux of the simulating molecules entering the domain. In the conventional DSMC algorithm, this number flux is calculated iteratively using sampled values of velocity and number density by means of an expression derived from the Maxwell distribution function. It is known that this procedure does not work well for low speed flows which are of interest in most micro-flow applications and the statistical scatter of the DSMC results is generally stated to be the main reason. However, the Maxwell distribution used in the pressure boundary treatment is valid for equilibrium conditions, and therefore, current implementations of the DSMC pressure boundary treatment are limited to boundaries with sufficiently small rarefaction effects. This is not the case for some practical problems in which highly rarefied flows through the boundaries lead to considerable nonequilibrium effects. In this study, an expression for the species number flux is derived using the Chapman–Enskog velocity distribution to improve the pressure boundary condition. The resulting algorithm is then used for modeling a micro-channel binary gas mixture flow with prescribed pressure boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.