Abstract

Pentachlorophenol-4-monooxygenase is an aromatic flavoprotein monooxygenase which hydroxylates pentachlorophenol and a wide range of polyhalogenated phenols at their para position. The PCP-degrading Sphingomonas species UG30 was recently shown to mineralize p-nitrophenol. In this study, the UG30 pcpB gene encoding the pentachlorophenol-4-monooxygenase gene was cloned for use to study its potential role in p-nitrophenol degradation. The UG30 pcpB gene consists of 1614 bp with a predicted translational product of 538 amino acids and a molecular mass of 59 933 Da. The primary sequence of pentachlorophenol-4-monooxygenase contained a highly conserved FAD binding site at its N-terminus associated with a βαβ fold. UG30 has been shown previously to convert p-nitrophenol to 4-nitrocatechol. We observed that pentachlorophenol-4-monooxygenase catalyzed the hydroxylation of 4-nitrocatechol to 1,2,4-benzenetriol. About 31.2% of the nitro substituent of 4-nitrocatechol (initial concentration of 200 μM) was cleaved to yield nitrite over 2 h, indicating that the enzyme may be involved in the second step of p-nitrophenol degradation. The enzyme also hydroxylated p-nitrophenol at the para position, but only to a very slight extent. Our results confirm that pentachlorophenol-4-monooxygenase is not the primary enzyme in the initial step of p-nitrophenol metabolism by UG30. The UG30 pcpB sequence has been deposited at the GenBank under accession number AF059680.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.