Abstract

AbstractSmall‐to‐moderate volcanic eruptions can lead to significant surface cooling when they occur clustered, as observed in recent decades. In this study, based on new high‐resolution ice‐core data from Greenland, we produce a new volcanic forcing data set that includes several small‐to‐moderate eruptions not included in prior reconstructions and investigate their climate impacts of the early 19th century through ensemble simulations with the Max Planck Institute Earth System Model. We find that clustered small‐to‐moderate eruptions produce significant additional global surface cooling (∼0.07 K) during the period 1812–1820, superposing with the cooling by large eruptions in 1809 (unidentified location) and 1815 (Tambora). This additional cooling helps explain the reconstructed long‐lasting cooling after the large eruptions, but simulated regional impacts cannot be confirmed with reconstructions due to a low signal‐to‐noise ratio. This study highlights the importance of small‐to‐moderate eruptions for climate simulations as their impacts can be comparable with that of solar irradiance changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.