Abstract

We report on the dynamics of 1,2-dioleoyl- sn-glycero-3-phosphoethanolamine- N-lissamine rhodamine B sulfonyl ammonium salt (Rhodamine-PE), incorporated into unilamellar vesicles composed of 1,2-dimyristoyl- sn-phosphatidylcholine (DMPC). A key question in the investigation of any bilayer system using tethered fluorescent probes is the role that the chromophore itself plays in determining the organization of phospholipid bilayers. In this work, we investigate the role of headgroup-bound chromophores by measuring the steady state and time-resolved fluorescence response of the tethered rhodamine chromophore as a function of concentration in the bilayer. We find that both the steady state and dynamical properties of the chromophores change with concentration, in a manner consistent with the introduction of disorganization to the bilayers. Steady state fluorescence spectra show a clear perturbation of the rhodamine emission spectrum at a chromophore concentration of 0.25 mol%, which is not seen for lower concentrations, and fluorescence anisotropy data show that both the motional freedom and confining volume experienced by the chromophore increase with concentration. Taken collectively, our data point to the importance of using low concentrations of optical probes in the interrogation of bilayer structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.