Abstract

Type 1 diabetes results from autoimmune destruction of pancreatic beta-cells by CD8(+) T cells. The requirement for CD8(+) T cells implicates perforin and granzymes as effectors of tissue destruction. Diabetogenic cytotoxic T cells kill beta-cells by the perforin/granzyme pathway in vitro. In the non-obese diabetic mouse model of type I diabetes, perforin deficiency results in a highly significant reduction in disease, indicating a direct role for perforin in beta-cell death in vivo, although other cell death pathways must account for the residual diabetes in perforin-deficient mice. Perforin and granzyme B are also important in allogeneic destruction of islets. The dominant role of the perforin/granzyme pathway in beta-cell destruction in type I diabetes and allogeneic islet graft rejection make this pathway an important target for blockade in future therapies for type I diabetes. In addition, granzymes have a newly recognized role in inflammation, a feature of both type I and II diabetes, suggesting their role should be further explored in both the common forms of diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.