Abstract

Linear low density polyethylene (LLDPE)/multi-walled carbon nanotube (MWCNT) composites were prepared by melt compounding, following two different compatibilization strategies that involved non-covalent interactions between the matrix and the filler. The first approach involved grafting pyridine aromatic moieties on the maleated polyolefin backbone, which are able to interact by π–π stacking with the surface of the nanotubes. The second method implemented non-covalent/non-specific surface functionalization of the MWCNTs with a hyperbranched polyethylene (HBPE). The enhanced interfacial interactions established in the composites containing LLDPE functionalized with pyridine grafts improved the dispersion of the nanotubes within the polymer matrix. Dispersion was also favoured by higher matrix viscosity. Composites containing finely dispersed MWCNTs exhibited an increase in the rheological and electrical percolation thresholds, and a significant improvement in mechanical properties. On the contrary the composites based on the low viscosity matrix contained large amounts of aggregates, which promoted lower percolation thresholds. Manipulation of matrix viscosity and compatibilization resulted in composites with good mechanical properties, and low percolation thresholds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.