Abstract

Mineral carbonation takes place through the reaction of CO2 with an alkalinity source that includes divalent cations such as calcium (Ca2 +) andmagnesium (Mg2 +) as well as hydroxyl anions to form stable carbonate minerals. Similar to algae-based (Chap. 7) and electrochemical CO2 reduction (Chap. 8) processes, mineral carbonation has the potential to couple the capture with the long-term storage of CO2. Although most studies of mineral carbonation to date have focused on the carbonation of a pure CO2 gas (i.e., assuming a previous capture step), CCS in a single-step mineral carbonation process may one day be possible. Therefore, it is important to consider this concept in the broader portfolio of CO2 capture technologies. Figure 9.1 shows a possible mineral carbonation stream in which an alkalinity source reacts with CO2 to form mineral carbonate. Energy requirements include thermal or mechanical treatment of the alkalinity source to improve its reactivity toward mineral carbonation. Determining the end use of the mineral carbonate may provide an upper limit on how much energy one is willing to spend on the carbonation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.