Abstract

The Li–Mn–Ni-O system has received much attention for potential positive electrode materials in lithium-ion batteries. Recent work mapping the phase diagrams of the entire pseudo-ternary system showed that the layered solid-solution region extends to compositions with both less and more lithium than the well-known lithium-rich layered composition line that joins Li2MnO3 to LiNi0.5Mn0.5O2. The part of this solid-solution region that is lithium deficient has a “bump” feature in the single-phase boundary, which could not be explained until now. The current study explores this part of the phase diagram with the use of X-ray diffraction, helium pycnometry measurements, redox titrations, and a Monte Carlo simulation. Results show that metal site vacancies are present in the structures in increasing amounts as the lithium content of the samples decreases. A Ni2+ ion and a vacancy can replace two Li+ ions in Li[Li1/3Mn2/3]O2 to make the solid solution series Li[Li(1/3)–xNix/2□x/2Mn2/3]O2 with 0 < x < 1/3. The mos...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.