Abstract
The increasing global prevalence of myopia calls for elaboration of the pathogenesis of this disease. Here, we show that selective ablation and activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) in developing mice induced myopic and hyperopic refractive shifts by modulating the corneal radius of curvature (CRC) and axial length (AL) in an opposite way. Melanopsin- and rod/cone-driven signals of ipRGCs were found to influence refractive development by affecting the AL and CRC, respectively. The role of ipRGCs in myopia progression is evidenced by attenuated form-deprivation myopia magnitudes in ipRGC-ablated and melanopsin-deficient animals and by enhanced melanopsin expression/photoresponses in form-deprived eyes. Cell subtype–specific ablation showed that M1 subtype cells, and probably M2/M3 subtype cells, are involved in ocular development. Thus, ipRGCs contribute substantially to mouse eye growth and myopia development, which may inspire novel strategies for myopia intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.