Abstract
The synthesis of a random copolymer through free radical copolymerization of a properly vinyl monofunctionalized regioregular poly(3-octylthiophene) (rrP3OT) macromonomer and N,N'-dimethylacrylamide (DMAM) is presented. The optical properties of the copolymer in water and in several organic solvents of varying polarity, as well as in THF/water and THF/methanol mixtures, were explored using UV-vis and photoluminescence spectroscopy. It is demonstrated that the rrP3OT chains adopt a coil conformation in solvents such as tetrahydrofuran (THF) and chloroform with the appearance of the absorption and emission maxima at 439 and 565 nm, respectively. On the contrary, the rrP3OT chains are organized on a single chain packing form (intrachain interactions) in polar solvents such as ethanol and methanol, as it is verified with the observation of the characteristic three vibronic features of the absorption spectra of the copolymer with maxima at 513, 550, and 603 nm and emission maxima at 560 nm. However, when water is used as solvent, the rrP3OT chains self-assemble into a stacklike structure due to the increased interchain interactions, as confirmed by the different aggregation process of the rrP3OT chains in the THF/water mixture, the broader absorption spectrum in water compared to those recorded in ethanol and methanol, and the 80 nm red-shifted emission maximum, centered at 640 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.