Abstract

The effect of the chemical modification of poly(propylene glycol) (PPG) end groups on the molecular dynamics under 2D confinement and the polymer/matrix interactions (including interfacial energies) was investigated by a combination of differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS), surface tension and contact angle measurements. The replacement of −OH groups in native PPG allowed to modify the interactions with the hydroxyl groups attached to the pore walls of nanoporous aluminum oxide (AAO) membranes of various pore diameter. It was found that the observed reduction in the glass transition temperature (Tg) of the core polymers correlates well with a general trend (the higher the solid–liquid interfacial tension, γSL, the lower Tg,confined) reported earlier. Moreover, we demonstrated that although the interfacial solid–liquid energy seems to be almost the same for each studied herein material, a clear change in the crossover temperature (Tc), related to the vitrification...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.