Abstract

The complex actions of the insulin-like-growth factor binding proteins (IGFBPs) in skeletal muscle are becoming apparent, with IGFBP2 being implicated in skeletal muscle cell proliferation and differentiation (Ernst et al., 1992; Sharples et al., 2010). Furthermore, PTEN signalling has been linked to IGFBP2 action in other cell types by co-ordinating downstream Akt signalling, a known modulator of myoblast differentiation. The present study therefore aimed to determine the interaction between IGFBP2 and PTEN on myoblast differentiation. It has previously been established that C2C12 cells have high IGFBP2 gene expression upon transfer to low serum media, and that expression reduces rapidly as cells differentiate over 72h [1]. Wishing to establish a potential role for IGFBP2 in this model, a neutralising IGFBP2 antibody was administered to C2C12 myoblasts upon initiation of differentiation. Myoblasts subsequently displayed reduced morphological differentiation (myotube number), biochemical differentiation (creatine kinase) and myotube hypertrophy (myotube area) with an early reduction in Akt phosphorylation. Knock-down of phosphatase and tensin homologue (PTEN) using siRNA in the absence of the neutralising antibody did not improve differentiation or hypertrophy vs. control conditions, however, in the presence of the neutralising IGFBP2 antibody, differentiation was restored and importantly hypertrophy exceeded that of control levels. Overall, these data suggest that; 1) reduced early availability of IGFBP2 can inhibit myoblast differentiation at later time points, 2) knock-down of PTEN levels can restore myoblast differentiation in the presence of neutralising IGFBP2 antibody, and 3) PTEN inhibition acts as a potent inducer of myotube hypertrophy when the availability of IGFBP2 is reduced in C2C12 myoblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.