Abstract

Experiments are performed to assess the inactivation of Bacillus subtilis spores using a non-thermal atmospheric-pressure dielectric barrier discharge. The plasma source used in this study is mounted inside a vacuum vessel and operated in controlled gas mixtures. In this context, spore inactivation is measured under varying nitrogen/oxygen and humidity content and compared to spore inactivation using ambient air. Operating the dielectric barrier discharge in a sealed vessel offers the ability to distinguish between possible spore inactivation mechanisms since different process gas mixtures lead to the formation of distinct reactive species. The UV irradiance and the ozone density within the plasma volume are determined applying spectroscopic diagnostics with neither found to fully correlate with spore inactivation. It is found that spore inactivation is most strongly correlated with the humidity content in the feed gas, implying that reactive species formed, either directly or indirectly, from water molecules are strong mediators of spore inactivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.