Abstract

The function of major histocompatibility complex (MHC) class II molecules is to sample exogenous antigens for presentation to CD4+ T helper cells. After synthesis in the endoplasmic reticulum, class II molecules are directed into the endosomal system by association with the invariant chain (Ii), which is sequentially cleaved, generating class II dimers loaded with Ii-derived peptides (CLIP). These class II-peptide complexes are physiological substrates for H2-M/HLA-DM, a resident of the endosomal/lysosomal system which facilitates the removal of CLIP from newly synthesised class II alpha beta dimers. Exchange of CLIP for antigenic class II-binding peptides is also promoted by the action of H2-M/HLA-DM, resulting in stable peptide-class II complexes that are transported to the cell surface for presentation to CD4+ T cells. Recent evidence suggests that this H2-M/HLA-DM-mediated 'peptide editing' is influenced by another MHC class II-encoded molecule, H2-O/HLA-DO. This non-polymorphic alpha beta heterodimer is associated with H2-M/HLA-DM during intracellular transport and within the endosomal system of B cells. H2-O/HLA-DO alters the peptide exchange function of H2-M/HLA-DM in a pH-dependent manner, so that H2-M/HLA-DM activity is limited to more acidic conditions, corresponding to lysosomal compartments. Indeed, H2-O/HLA-DO may serve to limit the presentation of antigens after fluid phase uptake by B cells, while augmenting presentation of antigens internalised via membrane Ig receptors. Such a mechanism may maintain the fidelity of the B-cell-CD4+ T-cell interaction, counteracting self reactivity arising from less stringent lymphocyte activation. Here, data evaluating the role of H2-O/HLA-DO shall be reviewed and its putative function discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.