Abstract

Schottky‐barrier solar cells (SBSCs) represent low‐cost candidates for photovoltaics applications. The engineering of the interface between absorber and front electrode is crucial for reducing the dark current, blocking the majority carriers injected into the electrode, and reducing surface recombination. The presence of tailored interfacial layers between the metal electrode and the semiconductor absorber can improve the cell performance. In this work, the interface of a graphene/n‐type Si SBSC by introducing a graphene‐based derivative (GBD) layer meant to reduce the Schottky‐barrier height (SBH) and ease the charge collection are engineered. The chemical vapor deposition (CVD) parameters are tuned to obtain the two graphene films with different structure and electrical properties: few‐layer graphene (FLG) working as transparent conductive electrode and GBD layer with electron‐blocking and hole‐transporting properties. Test SBSCs are fabricated to evaluate the effect of the introduction of GBD as interlayer into the FLG/n‐Si junction. The GBD layer reduces the recombination at the interface between graphene and n‐Si, and improves the external quantum efficiency (EQE) with optical bias from 50 to 60%. The FLG/GBD/n‐Si cell attains a power conversion efficiency (PCE) of ≈5%, which increase to 6.7% after a doping treatment by nitric acid vapor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.