Abstract

AbstractInfluence of filler network on Payne effect and modulus recovery for vapor grown carbon nanofiber (VGCF)/polystyrene (PS) composites with VGCF content above electrical percolation threshold was studied by using simultaneous measurements of viscoelasticity and electrical conductivity. The strain softening seems to be closely related to breakdown of filler network. Recovery tests of modulus and electrical conductivity by means of time sweep indicate that the reformation of deformed VGCF network structure could not be completed in several hours. Compared with recovery behavior of carbon black (CB) and silica (SiO2) network, the reformation of VGCF network appears more difficult. Moreover, solidification of composites exerts some effect on modulus recovery. The filler network disrupted by small strain can be perfectly recovered by matrix solidification while the initial filler structure collapsing at large strain is only partially restored. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.