Abstract
The metabotropic glutamate (mGlu) receptor 5 is a G protein-coupled receptor and is densely expressed in the mammalian brain. Like other glutamate receptors, mGlu5 receptors are tightly regulated by posttranslational modifications such as phosphorylation, although underlying mechanisms are incompletely investigated. In this study, we investigated the role of a prime kinase, extracellular signal-regulated kinase 1 (ERK1), in the phosphorylation and regulation of mGlu5 receptors in vitro and in striatal neurons. We found that recombinant ERK1 proteins directly bound to the C-terminal tail (CT) of mGlu5 receptors in vitro. Endogenous ERK1 also interacted with mGlu5 receptor proteins in adult rat striatal neurons in vivo. The kinase showed the ability to phosphorylate mGlu5 receptors. A serine residue in the distal region of mGlu5 CT was found to be a primary phosphorylation site sensitive to ERK1. In functional studies, we found that pharmacological inhibition of ERK with an inhibitor U0126 reduced the efficacy of mGlu5 receptors in stimulating production of cytoplasmic inositol-1,4,5-triphosphate, a major downstream conventional signaling event, in striatal neurons under normal conditions. These results identify mGlu5 as a new biochemical substrate of ERK1. The kinase can interact with and phosphorylate an intracellular domain of mGlu5 receptors in striatal neurons and thereby control its signaling efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.