Abstract

Heterosis is widely used in breeding, but the genetic basis of this biological phenomenon has not been elucidated. We postulate that additive and dominance genetic effects as well as two-locus interactions estimated in classical QTL analyses are not sufficient for quantifying the contributions of QTL to heterosis. A general theoretical framework for determining the contributions of different types of genetic effects to heterosis was developed. Additive x additive epistatic interactions of individual loci with the entire genetic background were identified as a major component of midparent heterosis. On the basis of these findings we defined a new type of heterotic effect denoted as augmented dominance effect di* that comprises the dominance effect at each QTL minus half the sum of additive x additive interactions with all other QTL. We demonstrate that genotypic expectations of QTL effects obtained from analyses with the design III using testcrosses of recombinant inbred lines and composite-interval mapping precisely equal genotypic expectations of midparent heterosis, thus identifying genomic regions relevant for expression of heterosis. The theory for QTL mapping of multiple traits is extended to the simultaneous mapping of newly defined genetic effects to improve the power of QTL detection and distinguish between dominance and overdominance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.