Abstract

Sono-photocatalysis has potential to increase the efficiency of both sonolysis and photocatalysis processes. On the other hand, in the sono-enhanced membrane separation processes the ultrasonic waves are able to clean the membrane surface, inhibit its fouling and enhance the separation efficiency. In this work, visible-light sono-photocatalysis and sono-enhanced membrane separation processes were coupled in a one pot/hybrid reactor for continuous flow removal of a dyestuff from water. First, N-doped titania sono-photocatalyst and microporous polyvinylidene fluoride membrane were prepared and characterized. Then, the hybrid reactor was set for the dyestuff degradation. The effect of operational variables including N-doped titania dosage, pH, retention time, visible-light power, radical scavengers and inorganic oxidants on the degradation efficiency was investigated. An enhancement in the degradation efficiency was observed by adding inorganic oxidants and increasing the retention time and visible light power. However, the degradation efficiency was decreased by increasing pH and adding organic and inorganic radical scavengers. 750 mg/L was the optimum N-doped titania dosage. The efficiency of the hybrid process was higher than other probable processes and the synergistic effect between photocatalysis and sonolysis was 23.51%. Main intermediates of dyestuff degradation were identified and a plausible degradation pathway was proposed using GC-MS analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.