Abstract
The immunoglobulin heavy chain locus undergoes a series of DNA rearrangements and modifications to achieve the construction and expression of individual antibody heavy chain genes in B cells. These events affect variable regions, through VDJ joining and subsequent somatic hypermutation, and constant regions through class switch recombination (CSR). Levels of IgH expression are also regulated during B cell development, resulting in high levels of secreted antibodies from fully differentiated plasma cells. Regulation of these events has been attributed primarily to two cis-elements that work from long distances on their target sequences, i.e., an ∼1 kb intronic enhancer, Eμ, located between the V region segments and the most 5′ constant region gene, Cμ; and an ∼40 kb 3′ regulatory region (3′ RR) that is located downstream of the most 3′ CH gene, Cα. The 3′ RR is a candidate for an “end” of B cell-specific regulation of the Igh locus. The 3′ RR contains several B cell-specific enhancers associated with DNase I hypersensitive sites (hs1–4), which are essential for CSR and for high levels of IgH expression in plasma cells. Downstream of this enhancer-containing region is a region of high-density CTCF binding sites, which extends through hs5, 6, and 7 and further downstream. CTCF, with its enhancer-blocking activities, has been associated with all mammalian insulators and implicated in multiple chromosomal interactions. Here we address the 3′ RR CTCF-binding region as a potential insulator of the Igh locus, an independent regulatory element and a predicted modulator of the activity of 3′ RR enhancers. Using chromosome conformation capture technology, chromatin immunoprecipitation, and genetic approaches, we have found that the 3′ RR with its CTCF-binding region interacts with target sequences in the VH, Eμ, and CH regions through DNA looping as regulated by protein binding. This region impacts on B cell-specific Igh processes at different stages of B cell development.
Highlights
One possibility to account for these observations is that interactions of immunoglobulin heavy chain gene locus (Igh) sequences with the CTCF/Pax5-binding site-rich hs5–7 region are secondary to the role of the 3 regulatory region (3 RR) enhancers and are not essential during class switch recombination (CSR)
The ∼10 kb 3 segment contains a region of high-density CTCF- and Pax5-binding sites with insulator activity
During B cell development, the 3 RR-its enhancers and CTCF-binding region – is involved, via loop formation, with various target Igh sequences. These include: (1) CTCF sites upstream of DH that are essential for normal VDJ joining and allelic Igh expression in pre-B cells; (2) I/switch sequences required for germline transcription (GT) and CSR in B cells, and c) JH and Eμ, which support Igh expression in plasma cells
Summary
The 3 RR contains several B cell-specific enhancers associated with DNase I hypersensitive sites (hs1–4), which are essential for CSR and for high levels of IgH expression in plasma cells. During bone marrow B cell development, the locus undergoes sequential DNA rearrangement and mutational events that generate an enormous range of antibody heavy chain genes, each specifying individual antigen binding sites associated with specific constant regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.