Abstract

In this study, an α-Al2O3:C,Mg single crystal was grown using the Czochralski method with graphite resistance heating, Al2O3, MgO, and graphite powder as raw materials. Both the graphite heating unit and the shield served as the carbon source during the growth process. The structure and the optical properties of the crystal were investigated. The as-grown crystal shows a prominent absorption band at 206 nm, 230 nm, and 256 nm. The excitation-emission (EE) spectrum reveals a weak luminescence center (435/510 nm) that is attributed to the $$ {\mathrm{F}}_2^{2+} $$ (2 Mg). We calculate the concentration of the F-type centers using Smakula’s equation. Using the first principles simulation method, we studied the relation between the C atoms and the absorption properties of the crystal, and we discuss the role of carbon in the formation mechanism of the F-type luminescence centers for a α-Al2O3:C,Mg crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.