Abstract

The C2 products formed over Ru during Fischer-Tropsch synthesis often lie well below the Anderson-Schulz-Flory line describing the C4+ products. This has led to speculation that either the surface precursor to C2 hydrocarbons is exceptionally long lived, or that the ethylene formed by CO hydrogenation readsorbs and thereby reenters the chain growth process. In this study, the role of ethylene readsorption on the dynamics of chain initiation and growth is investigated using13CO/H2 and12C2H4 to differentiate between the carbon sources. Ethylene addition is found to suppress the rate of methanation and increase the rates of formation of C3+ hydrocarbons. Ethylene serves as an effective chain initiator, as well as a source of C1 monomer species which participate in chain propagation. No evidence is seen, though, for the participation of C2 species in chain propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.