Abstract

Training and testing of conventional machine learning models on binary classification problems depend on the proportions of the two outcomes in the relevant data sets. This may be especially important in practical terms when real-world applications of the classifier are either highly imbalanced or occur in unknown proportions. Intuitively, it may seem sensible to train machine learning models on data similar to the target data in terms of proportions of the two binary outcomes. However, we show that this is not the case using the example of prediction of deleterious and neutral phenotypes of human missense mutations in human genome data, for which the proportion of the binary outcome is unknown. Our results indicate that using balanced training data (50% neutral and 50% deleterious) results in the highest balanced accuracy (the average of True Positive Rate and True Negative Rate), Matthews correlation coefficient, and area under ROC curves, no matter what the proportions of the two phenotypes are in the testing data. Besides balancing the data by undersampling the majority class, other techniques in machine learning include oversampling the minority class, interpolating minority-class data points and various penalties for misclassifying the minority class. However, these techniques are not commonly used in either the missense phenotype prediction problem or in the prediction of disordered residues in proteins, where the imbalance problem is substantial. The appropriate approach depends on the amount of available data and the specific problem at hand.

Highlights

  • In several areas of bioinformatics, binary classifiers are common tools that have been developed for applications in the biological community

  • Our results indicate that ‘‘balanced accuracy’’ is quite flat with respect to testing proportions, but is quite sensitive to balance in the training set, reaching a maximum for balanced training sets

  • The Selection of Neutral Data Sets From SwissVar, we obtained a set of human missense mutations associated with disease and a set of polymorphisms of unknown phenotype, often presumed to be neutral

Read more

Summary

Introduction

In several areas of bioinformatics, binary classifiers are common tools that have been developed for applications in the biological community. Based on input or calculated feature data, the classifiers predict the probability of a positive (or negative) outcome with probability P(+) = 1–P(–) Examples of this kind of classifier in bioinformatics include the prediction of the phenotypes of missense mutations in the human genome [1,2,3,4,5,6,7,8], the prediction of disordered residues in proteins [9,10,11,12,13,14,15,16,17], and the presence/ absence of beta turn, regular secondary structures, and transmembrane helices in proteins [18,19,20,21]. Very large amounts of such data have become available, especially from cancer genome projects comparing tumor and non-tumor samples [26] This led us to question the nature of our training and testing data sets, and how the proportions of positive and negative data points would affect our results. If we trained a classifier with balanced data sets (50% deleterious, 50% neutral), but genomic data have much lower rates of deleterious mutations would we overpredict deleterious phenotypes? Or should we try to create training data that resembles the potential application data? Should we choose neutral data that closely resembles potential input, for example human missense mutations in SwissVar, or should we use more distinct, for example data from close orthologues of human sequences in other organisms, in particular primates?

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.