Abstract
Coupling stability during cyclic arm movements in the horizontal (transverse) plane is lower in ISO- than in ANTI-directional coupling. We proposed that such impairment arises from the interference exerted in ISO by the anticipatory postural adjustments (APAs) linked to the primary movements. To evaluate if a link between coupling stability and postural adjustments also exist for arm movements with different postural requirements, we focused on arm(s) flexion-extension in the parasagittal plane and started by analysing the APAs distribution in arm, trunk and leg muscles. Fast flexion and extension of the right arm elicited APAs in the left anterior and posterior deltoid that replicated the excitation-inhibition of the homologous prime movers; this pattern would favour ISO and contrast ANTI-coupled movements. Instead, in the left latissimus dorsi, APAs were opposite to the voluntary actions in the right latissimus dorsi, thus favouring ANTI coupling. Symmetrical APAs were also elicited in right and left erector spinae (RES, LES) and asymmetrical APAs in Ischiocruralis (RIC, LIC), while an antero-posterior force (Fy) and a moment about the vertical axis (Tz) were discharged to the ground. When fast discrete movements were ISO-coupled, APAs were symmetrical in trunk (RES, LES) and leg (RIC, LIC) muscles and a large Fy but no Tz was generated. In ANTI coupling, APAs in RES and LES remained symmetrical, whereas they became antisymmetrical in RIC and LIC. A large Tz and a small Fy were recorded. In conclusion, during parasagittal movements, APAs in are elicited in both ISO and ANTI coupling, at variance with horizontal movements where they are only present in ISO. This would suggest that the difference in coupling stability between the two modes is smaller (or even reversed) in parasagittal with respect to horizontal arm movements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.