Abstract

We investigated the feasibility of two novel engineered biochar composites by pyrolyzing cabbage leaves at 350 °C after pre-treating them with anthocyanin, followed by a post-treatment with kaolinite for the removal of two potentially toxic elements (copper and lead) and a pharmaceutical compound, metoprolol. Results showed that the Kaolinite-biochar composite (KB) exhibited the highest adsorption capacity, 188.67 and 48.07 mg/g for Pb and Cu at pH 5, and the anthocyanin-biochar composite (AB) exhibited the highest adsorption capacity: 41.15 mg/g for metoprolol at pH 6, compared to raw biochar respectively. The enhancement of the adsorption of heavy metal and metoprolol by KB and AB was due to an increase in certain oxygen functional groups, as confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results. The pseudo-second order kinetic model, along with Langmuir isotherm model, best described the kinetic and the isotherms for Pb, Cu and metoprolol in KB and AB composites, respectively. FTIR, XPS, and zeta potential measurements indicated that the sorption mechanisms involved electrostatic interaction, ion exchange, and complexation for the metals, while electrostatic interaction, H-bonding, π-πinteraction, and hydrophobic bonding were postulated as the contributing mechanisms in the sorption process of metoprolol. Anthocyanin and kaolinite could potentially be considered as alternative sustainable materials for modifying raw biochar and remediating toxic elements and pharmaceuticals in aqueous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.