Abstract

BackgroundThis study is to investigate the influence of hemodynamics on Stanford type-A aortic dissection with different tear size and location, to provide some support for the relationships between the risks (rupture, reverse tearing and further tearing) and tear size and location for clinical treatment.MethodsFour numerical models of Stanford type-A aortic dissection were established, with different size and location of the tears. The ratio of the area between the entry and re-entry tears(RA) is various within the model; while, the size and the location of the re-entry in the distal descending aorta are fixed. In model A11 and A21, the entry tears are located near the ascending aorta. The RA in these models are 1 and 2, respectively; In the model B11 and B21, the entry tears are located near the proximal descending aorta and the RA in these models are again assigned to 1 and 2, respectively. Then hemodynamics in these models was solved with numerically and the flow patterns and loading distributions were investigated.ResultsThe flow velocity of the true lumen in model A21, B21 is lower than that in A11, B11, respectively; the time-averaged wall shear stress (TAWSS) of the false lumen in model A21 and B21 is higher, and for ascending aorta false lumen, A11, A21 are higher than B11, B21, respectively. False lumen intimal wall pressure of A11, A21 are always higher than the true lumen ones.ConclusionThe variation of the RA can significantly affect the dynamics of blood within the aortic dissection. When the entry tear size is larger than the re-entry tear ones, the false lumen, proximal descending aorta and the wall near re-entry tear are prone to cracking. Entry tear location can significantly alter the hemodynamics of aortic dissection as well. When entry tear location is closer to proximal ascending aorta, false lumen continues to expand and compress the true lumen resulting in the true lumen reduction. For proximal ascending aorta, high pressure in false lumen predicts a higher risk of reverse tear.

Highlights

  • This study is to investigate the influence of hemodynamics on Stanford type-A aortic dissection with different tear size and location, to provide some support for the relationships between the risks and tear size and location for clinical treatment

  • When the blood flows from the aortic arch to the thoracic aorta, the peak value of the velocity is deviated from the medial wall gradually, and the velocity is high near the proximal descending aorta

  • This study emphasizes on the hemodynamics in Stanford type-A aortic dissection with different tear size and location, hemodynamic factors such as flow patterns, pressure and wall shear stress (WSS), which are difficult to measure in vivo, can be determined through computational fluid dynamics (CFD) simulations

Read more

Summary

Introduction

This study is to investigate the influence of hemodynamics on Stanford type-A aortic dissection with different tear size and location, to provide some support for the relationships between the risks (rupture, reverse tearing and further tearing) and tear size and location for clinical treatment. Once Stanford type-A aortic dissection diagnosed, the patient should do emergency surgery immediately, but restricted by geographical, economic and technological conditions, not all patients can receive treatment in time. It provides a more effective way to elucidate the mechanism of some vascular diseases (such as aortic dissection) and to predict their progression. It was pointed out from previous studies that hemodynamic parameters such as flow velocity, wall pressure and wall shear stress (WSS) [7,8,9,10] have an important correlation with rupture. CFD helps to understand and predict various phenomena in the development of dissecting aneurysm

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.