Abstract

Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes). By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a ‘two-speed’ mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion) in the evolutionary history of the species–the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia–the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections in shaping animal venoms.

Highlights

  • Venom is an intriguing evolutionary innovation that is utilized by various animals for predation and/or defense

  • A large proportion of centipede venoms are characterized by β-pore-forming toxins (β-PFT) that are similar to aerolysins and epsilon toxins from bacteria [28]

  • In contrast to venom-encoding genes in evolutionarily younger lineages that continue experiencing positive selection when they diversify via recurrent duplication events, we find that β-PFTs are evolutionarily extremely constrained under negative selection, as indicated by ω smaller one (Table 1)

Read more

Summary

Introduction

Venom is an intriguing evolutionary innovation that is utilized by various animals for predation and/or defense. This complex biochemical cocktail is characterized by a myriad of organic and inorganic molecules, such as proteins, peptides, polyamines and salts that disrupt the normal physiology of the envenomed animal. The evolution of venom in most of the ancient lineages, such as cnidarians (corals, sea anemones, hydroids and jellyfish), coleoids (octopus, squids and cuttlefish), spiders and centipedes, remains understudied, if not completely overlooked. Perhaps the only exhaustively investigated ancient venomous clade are the scorpions, which originated in the Silurian about 430 MA [11, 12]. Research to date has solely focused on how positive selection has expanded the venom arsenal, while completely ignoring the role of negative (purifying) selection

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.