Abstract
For $N_\infty$ operads $\mathcal O$ and $\mathcal O'$ such that there is an inclusion of the associated indexing systems, there is a forgetful functor from incomplete Tambara functors over $\mathcal O'$ to incomplete Tambara functors over $\mathcal O$. Roughly speaking, this functor forgets the norms in $\mathcal O'$ that are not present in $\mathcal O$. The forgetful functor has both a left and a right adjoint; the left adjoint is an operadic tensor product, but the right adjoint is more mysterious. We explicitly compute the right adjoint for finite cyclic groups of prime order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.