Abstract

Significant advances have been made in applying ideas from nonlinear dynamical systems theory to flows which exhibit sequences of bifurcations in the transition to turbulence. Moreover, the recent discoveries of finite-amplitude states in linearly stable flows holds great promise for a breakthrough in our understanding transition in shear flows. Tsukahara, Tillmark & Alfredsson (J. Fluid Mech., 2010, this issue, vol. 648, pp. 5–33) study a novel variant of a classical shear flow by adding global rotation. The competition between the induced body force and shear-induced instabilities leads to the discovery of a rich and beautiful tapestry of transition sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.