Abstract

An electrical network with the structure of a random tree is considered: starting from a root vertex, in one iteration each leaf (a vertex with zero or one adjacent edges) of the tree is extended by either a single edge with probability p or two edges with probability 1 − p. With each edge having a resistance equal to 1Ω, the total resistance Rn between the root vertex and a busbar connecting all the vertices at the nth level is considered. A dynamical system is presented which approximates Rn, it is shown that the mean value 〈Rn〉 for this system approaches (1 + p)/(1 − p) as n → ∞, the distribution of Rn at large n is also examined. Additionally, a random sequence construction akin to a random Fibonacci sequence is used to approximate Rn; this sequence is shown to be related to the Legendre polynomials and its mean is shown to converge with |〈Rn〉 − (1 + p)/(1 − p)| ∼ n−1/2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.