Abstract

AbstractConvectively coupled Kelvin waves (CCKWs) are important drivers of tropical weather and may influence extreme rainfall and tropical cyclone formation. However, directly attributing these impacts to CCKWs remains a challenge. Numerical models also struggle to simulate the convective coupling of CCKWs. To address these gaps in understanding, this study examines a set of global simulations in which CCKW amplitudes are modified in the initial conditions. The Model for Prediction Across Scales –Atmosphere is used to simulate a time period in which several CCKWs coexisted around the globe, including an unusually strong CCKW located over the Atlantic. Prior to running the simulation, Kelvin‐filtered fields are identified in initial conditions and used to either amplify or dampen the initial wave amplitude. This method is effective at robustly changing the strength and structure of simulated CCKWs and can illuminate their convective coupling. Rainfall intensity within simulated CCKWs is shown to be partially controlled by column saturation fraction and deep convective inhibition. Despite the accurate depiction of most CCKWs during this time period, however, these experiments fail to simulate convective coupling in the strong Atlantic CCKW. This is true even after amplifying this wave at initialization. The cause of this failure is unclear and motivates additional work into the modeling and predictability of CCKW events. Overall, this study demonstrates that modifying CCKW amplitudes can serve as a useful tool for understanding CCKWs. This method may also be useful for future attributional work on the influence of CCKWs on other phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.