Abstract

In pelagic waters, the removal of particle-reactive radionuclides is controlled by nuclide sorption to particles and subsequent settling by gravity. However, in shallow nearshore waters, the dominant mechanism of nuclide scavenging is not so clear. Understanding how particle-reactive radionuclides are scavenged from the water column is critical if these tracers are to be used as proxies of particle flux in shallow aquatic systems. In this study, we present evidence that the removal of particle-reactive radionuclides in nearshore and turbulent waters is primarily controlled by bottom scavenging. Specifically, we measured both water column and bottom sediment activities of sewage-sourced iodine-131 (131I, t ½ = 8.02 days) and atmospherically-sourced beryllium-7 (7Be, t ½ = 53.3 days) in a semi-enclosed harbor. We show that the water column 7Be/131I flux ratio that is required to sustain observed harbor bottom inventories of both nuclides is incongruent with 7Be/131I activity ratios on water column particles, and (2) 131I and 7Be derived mass fluxes of particulate matter to the harbor bottom are in concordance with each other and independently made estimates of river sediment loading to the harbor only when bottom scavenging of both particle-bound and dissolved (<0.7 μm) nuclide fractions are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.