Abstract

The relationship of the slope of the heart rate graph regression curve (b1) with periodic (linear) and nonlinear heart rate dynamics has been studied in stationary short-time series (256 points). For estimating nonlinear dynamics, a parameter derived from correlation dimension has been used, which has made it possible to estimate chaotic processes in short-time series. According to the results of the study, the heart rate dynamics in short-time series may be represented as a sum of linear (periodic) and nonlinear (stochastic) processes. The relationships of b1 with both the linear and the nonlinear heart rate dynamics have been demonstrated. Equations for calculating the absolute and relative (to the periodic oscillation amplitude) noises in the heart rate dynamics in short-time series are proposed. Stochastic nonlinear dynamics in different physiological states of humans have been compared. It has been found that the increase in the relative noise intensity in the heart rate dynamics with an increase in respiration rate is determined not only by the decrease in the amplitude of respiratory waves, but also by an increase in the amplitude of the noise itself. The absolute noise intensity is decreased in the states of neurotic excitement, fatigue, and, especially, mental stress. In the state of rest, nonlinear (stochastic) processes dominate over linear (periodic) ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.