Abstract
The variation on mechanical properties and crystalline structure of gamma-irradiated Sn-rich lead-free solder (SAC) were intensively investigated using nanoindentation and X-ray diffraction (XRD) techniques. Samples of solder on a printed circuit board (PCB) with copper substrate were irradiated at low dose (5 Gray) of gamma from Co-60 source. The nanoindentation hardness for β-Sn phase of the solder was found to increase from 0.1935 GPa to 0.2210 GPa after the irradiation. Furthermore XRD peak intensity was also observed to increase as well indicating the occurrence of defect in β-Sn crystal structure due to gamma radiation. The defect contributes to the increment of the hardness by indicating the change in crystallite size of the grains. Microstructure analysis by FESEM-EDAX has also confirmed the indentation was performed with no cracks in subsurface on β-Sn area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.