Abstract
The human prothrombin G20210A polymorphism located at the 3′ cleavage site of the mRNA results in elevated plasma prothrombin levels and increased risk of venous thrombosis. This polymorphism has been shown to directly influence a variety of processes related to prothrombin mRNA metabolism. We have constructed plasmids that express the full-length prothrombin mRNA that is polyadenylated at its natural site. The A allele prothrombin variant was more efficient than the G allele at promoting cleavage at this site in the presence of a competing poly (A) sequence. In the absence of competition, both allelic variants give rise to a similar level of cleavage site heterogeneity. An upstream sequence element (USE) was also identified within the prothrombin 3′-UTR. When placed upstream of two competing poly (A) sites, the USE directed cleavage preferentially to the proximal poly (A) site. In the absence of competition, the USE had no effect on cleavage site selection. This study suggests that the basis for the increase in prothrombin expression in A allele carriers is not due to allelic changes in cleavage site selection per se. In addition, the functionality of USEs needs to be considered within the context of endogenous sequence architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.