Abstract

The RMS surface roughness of an optical polymer waveguide end facet cut by a milling router and measured by AFM is investigated for a range of rotation speeds and translation speeds of the router. It was found that 1 flute (cutting edge) routers gave significantly less rough surfaces than 2 or 3 flute routers. The best results were achieved for a 1 flute router when the milling bit was inserted from the copper layer side of the board with a rotation speed of 15,000 rpm and a translation speed of 0.25 m/min which minimized the waveguide core end facet RMS roughness to 183 ± 8 nm and gave input optical coupling loss of 1.7 dB ± 0.5 dB and output optical coupling loss of 2.0 dB ± 0.7 dB. The relationship between optical coupling loss at the input and output of the waveguides and waveguide end facet roughness is also investigated in this paper. The ratio of RMS roughness to autocorrelation length of the roughness is shown to have a quantified linear relationship with experimental measurements of optical insertion loss, input optical coupling loss and output optical coupling loss. A new fabrication technique for cut waveguide end facet treatment has been proposed and demonstrated which reduces the insertion loss by 2.60 dB ± 1.3 dB which is more than that achieved by the closest available index matching fluid which gave 2.23 dB ± 1.2 dB and which is far more robust for use in commercial products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.